Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zi-Liang Wang, ${ }^{\text {a }}$ Lin-Heng Wei ${ }^{\text {b }}$ and Jing-Yang Niu ${ }^{\text {a* }}$

${ }^{\text {a College of Chemistry and Chemical }}$ Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ${ }^{\text {b }}$ College of Environment and Planning, Henan University, Kaifeng 475001, People's Republic of China

Correspondence e-mail: jyniu@henu.edu.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.077$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diaquabis[malonato(1-)- $\kappa^{2} O, O^{\prime}$]cobalt(II)

The title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, is isostructural with its iron, zinc and magnesium analogues. The molecule has inversion symmetry. The molecules are linked together via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to a three-dimensional network.

Comment

The title complex, $\left[\mathrm{Co}(\mathrm{Hmal})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{H}_{2} \mathrm{mal}\right.$ is malonic acid), (I), is isostructural with its iron(II) (Ravi et al., 1982), zinc (Sinha \& Ojha, 1980) and magnesium (Briggman \& Oskarsson, 1978) analogues. A compound with the same formula as (I) and a similar unit cell was reported by WalterLevy et al. (1973), but no atomic coordinates were established.

(I)

The complete molecule of (I) is generated by inversion symmetry (Fig. 1), resulting in a slightly distorted $\mathrm{Co}^{\mathrm{II}} \mathrm{O}_{6}$ octahedron arising from two bidentate HMal ligands and two water molecules (Table 1). The fact that the $\mathrm{Co} 1-\mathrm{O} 3$ bond is significantly shorter than the $\mathrm{Co} 1-\mathrm{O} 2$ bond might be rationalized in terms of the formal negative charge shared between atoms O 3 and O 4 , resulting in a stronger electrostatic attraction between atoms Co 1 and O 3 than between atoms $\mathrm{Co1}$ and O 2 .

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Atoms with the suffix a are generated by the symmetry operation ($-x, 1-y, 1-z$).

Received 22 August 2005 Accepted 26 August 2005 Online 7 September 2005

Figure 2
The crystal packing in (I), viewed down the a axis of the unit cell, showing hydrogen bonds as dashed lines. [Symmetry codes: (h) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (j) $x, \frac{1}{2}+y, \frac{1}{2}+z$.]

The molecules of (I) are linked together via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, leading to a three-dimensional network (Fig. 2, Table 2).

Experimental

Solid cobalt basic carbonate ($1.11 \mathrm{mmol}, 0.593 \mathrm{~g}$) was added to an aqueous solution (20 ml) of malonic acid ($5.0 \mathrm{mmol}, 0.520 \mathrm{~g}$) under continuous stirring until a pink solution resulted. The solution was filtered and left at room temperature. After slow evaporation of the solvent over a period of a week, large pink crystals of (I) were formed (40% yield, based on Co). Analysis, found: C 23.98, H 3.42\%; calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{CoO}_{10}$: C 23.91 , $\mathrm{H} 3.32 \%$.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=301.07$
Monoclinic,,P_{1} / c
$a=4.9331(16) \AA$
$b=11.276(4) \AA$
$c=9.682(3) \AA$
$\beta=90.018(1)^{\circ} \AA^{\circ}$
$V=538.6(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEX CCD area-	1170 independent reflections
detector diffractometer	1070 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.061$
Absorption correction: multi-scan	$\theta_{\max }=27.0^{\circ}$
$(S A D A B S ;$ Sheldrick, 2001 $)$	$h=-6 \rightarrow 6$
$T_{\min }=0.639, T_{\max }=0.853$	$k=-10 \rightarrow 14$
3190 measured reflections	$l=-12 \rightarrow 11$

$D_{x}=1.857 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2256 reflections
$\theta=2.8-28.0^{\circ}$
$\mu=1.64 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, pink
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

1170 independent reflections
1070 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$h=-6 \rightarrow 6$
$k=-10 \rightarrow 14$
$l=-12 \rightarrow 11$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0457 P)^{2}\right. \\
& \quad+0.0555 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.077$
$S=1.05$
1170 reflections
88 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters (\AA).

Co1-O3	$2.0488(11)$	C1-O2	$1.2170(19)$
Co1-O2	$2.0815(12)$	C3-O3	$1.249(2)$
Co1-O5	$2.0825(15)$	C3-O4	$1.2492(19)$
C1-O1	$1.3067(19)$		

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.80	$2.6099(17)$	168
O5-H5A $^{\mathrm{i}}$	$0.81(1)$	$1.94(1)$	$2.747(2)$	$172(2)$
O5-H5 $^{\mathrm{ii}} \cdots \mathrm{O} 3^{\mathrm{iii}}$	$0.82(1)$	1.96 (1)	$2.767(2)$	$171(2)$

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+1,-y+1$, $-z+1$.

H atoms bonded to C and carboxylate O atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.97 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ carboxylate O$)$. The water H atoms were found in a difference Fourier map and were refined with restraints on the $\mathrm{O}-\mathrm{H}$ distance $[0.811$ (9)-0.815 (9) \AA].

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors thank Henan Innovation Project for University Prominent Research Talents for financial support.

References

Briggman, B. \& Oskarsson, Å. (1978). Acta Cryst. B34, 3357-3359.
Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Ravi, N., Jagannathan, R., Rao, B. B. \& Hussain, M. R. (1982). Inorg. Chem. 21, 1019-1022.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sinha, U. C. \& Ojha, S. (1980). Z. Kristallogr. 152, 157.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Walter-Levy, L., Perroyey, J. \& Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351-1354.

